Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2317257

RESUMEN

Triple-negative breast cancer (TNBC) is insensitive to target therapy for non-TNBC and needs novel drug discovery. Extracts of the traditional herb Boesenbergia plant in Southern Asia exhibit anticancer effects and contain novel bioactive compounds but merely show cytotoxicity. We recently isolated a new compound from B. stenophylla, stenophyllol B (StenB), but the impact and mechanism of its proliferation-modulating function on TNBC cells remain uninvestigated. This study aimed to assess the antiproliferative responses of StenB in TNBC cells and examine the drug safety in normal cells. StenB effectively suppressed the proliferation of TNBC cells rather than normal cells in terms of an ATP assay. This preferential antiproliferative function was alleviated by pretreating inhibitors for oxidative stress (N-acetylcysteine (NAC)) and apoptosis (Z-VAD-FMK). Accordingly, the oxidative-stress-related mechanisms were further assessed. StenB caused subG1 and G2/M accumulation but reduced the G1 phase in TNBC cells, while normal cells remained unchanged between the control and StenB treatments. The apoptosis behavior of TNBC cells was suppressed by StenB, whereas that of normal cells was not suppressed according to an annexin V assay. StenB-modulated apoptosis signaling, such as for caspases 3, 8, and 9, was more significantly activated in TNBC than in normal cells. StenB also caused oxidative stress in TNBC cells but not in normal cells according to a flow cytometry assay monitoring reactive oxygen species, mitochondrial superoxide, and their membrane potential. StenB induced greater DNA damage responses (γH2AX and 8-hydroxy-2-deoxyguanosine) in TNBC than in normal cells. All these StenB responses were alleviated by NAC pretreatment. Collectively, StenB modulated oxidative stress responses, leading to the antiproliferation of TNBC cells with little cytotoxicity in normal cells.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Daño del ADN , Proliferación Celular , Línea Celular Tumoral , Estrés Oxidativo , Apoptosis , Acetilcisteína/farmacología
2.
Adv Respir Med ; 91(2): 146-163, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2301826

RESUMEN

Respiratory diseases such as cystic fibrosis, COPD, and COVID-19 are difficult to treat owing to viscous secretions in the airways that evade mucocilliary clearance. Earlier studies have shown success with BromAc as a mucolytic agent. Hence, we tested the formulation on two gelatinous airway representative sputa models, to determine whether similar efficacy exist. Sputum lodged in an endotracheal tube was treated to aerosol N-acetylcysteine, bromelain, or their combination (BromAc). After measuring the particle size of aerosolized BromAc, the apparent viscosity was measured using a capillary tube method, whilst the sputum flow was assessed using a 0.5 mL pipette. Further, the concentration of the agents in the sputa after treatment were quantified using chromogenic assays. The interaction index of the different formulations was also determined. Results indicated that the mean particle size of BromAc was suitable for aerosol delivery. Bromelain and N-acetylcysteine affected both the viscosities and pipette flow in the two sputa models. BromAc showed a greater rheological effect on both the sputa models compared to individual agents. Further, a correlation was found between the rheological effects and the concentration of agents in the sputa. The combination index using viscosity measurements showed synergy only with 250 µg/mL bromelain + 20 mg/mL NAC whilst flow speed showed synergy for both combinations of bromelain (125 and 250 µg/mL) with 20 mg/mL NAC. Hence, this study indicates that BromAc may be used as a successful mucolytic for clearing airway congestion caused by thick mucinous immobile secretions.


Asunto(s)
COVID-19 , Trastornos Respiratorios , Humanos , Acetilcisteína/uso terapéutico , Acetilcisteína/farmacología , Esputo , Bromelaínas/uso terapéutico , Bromelaínas/farmacología , Expectorantes/uso terapéutico , Expectorantes/farmacología , Reología
3.
J Clin Psychiatry ; 83(5)2022 09 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2201522

RESUMEN

N-acetylcysteine (NAC) augmentation of antipsychotic medication is one of very many antipsychotic augmentation strategies that have been studied in schizophrenia. A recent systematic review and meta-analysis of 6 randomized controlled trials (RCTs) found that NAC (median dose, 2,000 mg/d) improved several clinical outcomes at different time points with medium to large effect sizes; however, many of the significant findings in this meta-analysis are suspect because they appeared to be influenced by 2 short-term (8-week) RCTs with outlying characteristics. Important findings not influenced by the 2 outlying RCTs were significant attenuation by NAC of negative symptom (3 RCTs) and total psychopathology (2 RCTs) ratings at ≥ 24 weeks and improvement in working memory but not processing speed (3 RCTs). Of these findings, reduction in psychopathology ratings, though statistically significant, appeared too small to be clinically meaningful. Finally, a newly published, moderately large RCT of NAC (2,000 mg/d) in schizophrenia patients refractory to clozapine found that 1 year of treatment with NAC did not outperform placebo for any clinical, cognitive, or quality of life outcome. The take-home message is that it is premature to recommend the use of NAC to treat schizophrenia for any target domain in routine clinical practice and that there does not appear to be a role for NAC for any indication in clozapine-refractory schizophrenia. However, it may be worth studying whether NAC, dosed at 2,000 mg/d or higher for 6 months or longer, improves functional outcomes in schizophrenia.


Asunto(s)
Antipsicóticos , Clozapina , Esquizofrenia , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Antipsicóticos/uso terapéutico , Clozapina/uso terapéutico , Humanos , Esquizofrenia/tratamiento farmacológico
4.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2123695

RESUMEN

Inflammasome activation is one of the first steps in initiating innate immune responses. In this work, we studied the activation of inflammasomes in the airways of critically ill COVID-19 patients and the effects of N-acetylcysteine (NAC) on inflammasomes. Tracheal biopsies were obtained from critically ill patients without COVID-19 and no respiratory disease (control, n = 32), SARS-CoV-2 B.1 variant (n = 31), and B.1.1.7 VOC alpha variant (n = 20) patients. Gene expression and protein expression were measured by RT-qPCR and immunohistochemistry. Macrophages and bronchial epithelial cells were stimulated with different S, E, M, and N SARS-CoV-2 recombinant proteins in the presence or absence of NAC. NLRP3 inflammasome complex was over-expressed and activated in the COVID-19 B.1.1.7 VOC variant and associated with systemic inflammation and 28-day mortality. TLR2/MyD88 and redox NOX4/Nrf2 ratio were also over-expressed in the COVID-19 B.1.1.7 VOC variant. The combination of S-E-M SARS-CoV-2 recombinant proteins increased cytokine release in macrophages and bronchial epithelial cells through the activation of TLR2. NAC inhibited SARS-CoV-2 mosaic (S-E-M)-induced cytokine release and inflammasome activation. In summary, inflammasome is over-activated in severe COVID-19 and increased in B.1.1.7 VOC variant. In addition, NAC can reduce inflammasome activation induced by SARS-CoV-2 in vitro, which may be of potential translational value in COVID-19 patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Inflamasomas/metabolismo , Acetilcisteína/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Citocinas , Proteínas Recombinantes/farmacología
5.
Cells ; 11(20)2022 10 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2082060

RESUMEN

The binding of SARS-CoV-2 spikes to the cell receptor angiotensin-converting enzyme 2 (ACE2) is a crucial target both in the prevention and in the therapy of COVID-19. We explored the involvement of oxidoreductive mechanisms by investigating the effects of oxidants and antioxidants on virus uptake by ACE2-expressing cells of human origin (ACE2-HEK293). The cell uptake of pseudoviruses carrying the envelope of either Delta or Omicron variants of SARS-CoV-2 was evaluated by means of a cytofluorimetric approach. The thiol N-acetyl-L-cysteine (NAC) inhibited the uptake of both variants in a reproducible and dose-dependent fashion. Ascorbic acid showed modest effects. In contrast, neither hydrogen peroxide (H2O2) nor a system-generating reactive oxygen species (ROS), which play an important role in the intracellular alterations produced by SARS-CoV-2, were able to affect the ability of either Delta or Omicron SARS-CoV-2 pseudoviruses to be internalized into ACE2-expressing cells. In addition, neither H2O2 nor the ROS generating system interfered with the ability of NAC to inhibit that mechanism. Moreover, based on previous studies, a preventive pharmacological approach with NAC would have the advantage of decreasing the risk of developing COVID-19, irrespective of its variants, and at the same time other respiratory viral infections and associated comorbidities.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Tratamiento Farmacológico de COVID-19 , Humanos , SARS-CoV-2 , Acetilcisteína/farmacología , Peróxido de Hidrógeno/farmacología , Especies Reactivas de Oxígeno , Antioxidantes/farmacología , Células HEK293 , Peptidil-Dipeptidasa A/metabolismo , Ácido Ascórbico/farmacología , Oxidantes/farmacología , Compuestos de Sulfhidrilo/farmacología
6.
Eur Rev Med Pharmacol Sci ; 26(13): 4872-4880, 2022 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1955404

RESUMEN

OBJECTIVE: Growing interest is directed to the outcomes of COVID-19 in survivors, both in the convalescent period and in the long-term, which are responsible for morbidity and quality of life deterioration. This article aims to describe the mechanisms supporting the possible use of NAC as an adjuvant treatment for post-COVID-19 pulmonary fibrosis. MATERIALS AND METHODS: A search was performed in PubMed/MEDLINE. RESULTS: Interstitial changes have been observed in the CT scan of COVID-19 pneumonia. In patients with respiratory outcomes in the post-COVID-19 stage, glutathione (GSH) deficiency was found and interpreted as a reaction to the inflammatory cascade caused by the viral infection, while the pathophysiological process of pulmonary fibrosis involves numerous cytokines, such as TGF-ß, TNF-α, IL-1, PDGF and VEGF. NAC has a good tolerability profile, is easily administered orally and inexpensively, and has antioxidant and anti-inflammatory effects that may target the pathophysiologic mechanisms involved in pulmonary fibrosis. It may revert GSH deficiency, exerts direct and indirect antioxidant activity, anti-inflammatory activity and improves immune T-cell response. CONCLUSIONS: The mechanism of action of NAC suggests a role in the treatment of pulmonary fibrosis induced by COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Fibrosis Pulmonar , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Antiinflamatorios , Antioxidantes/farmacología , Glutatión , Humanos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Calidad de Vida
7.
J Control Release ; 346: 421-433, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1763813

RESUMEN

Acute Respiratory Distress Syndrome (ARDS), associated with Covid-19 infections, is characterized by diffuse lung damage, inflammation and alveolar collapse that impairs gas exchange, leading to hypoxemia and patient' mortality rates above 40%. Here, we describe the development and assessment of 100-nm liposomes that are tailored for pulmonary delivery for treating ARDS, as a model for lung diseases. The liposomal lipid composition (primarily DPPC) was optimized to mimic the lung surfactant composition, and the drug loading process of both methylprednisolone (MPS), a steroid, and N-acetyl cysteine (NAC), a mucolytic agent, reached an encapsulation efficiency of 98% and 92%, respectively. In vitro, treating lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages with the liposomes decreased TNFα and nitric oxide (NO) secretion, while NAC increased the penetration of nanoparticles through the mucus. In vivo, we used LPS-induced lung inflammation model to assess the accumulation and therapeutic efficacy of the liposomes in C57BL/6 mice, either by intravenous (IV), endotracheal (ET) or IV plus ET nanoparticles administrations. Using both administration methods, liposomes exhibited an increased accumulation profile in the inflamed lungs over 48 h. Interestingly, while IV-administrated liposomes distributed widely throughout the lung, ET liposomes were present in lungs parenchyma but were not detected at some distal regions of the lungs, possibly due to imperfect airflow regimes. Twenty hours after the different treatments, lungs were assessed for markers of inflammation. We found that the nanoparticle treatment had a superior therapeutic effect compared to free drugs in treating ARDS, reducing inflammation and TNFα, IL-6 and IL-1ß cytokine secretion in bronchoalveolar lavage (BAL), and that the combined treatment, delivering nanoparticles IV and ET simultaneously, had the best outcome of all treatments. Interestingly, also the DPPC lipid component alone played a therapeutic role in reducing inflammatory markers in the lungs. Collectively, we show that therapeutic nanoparticles accumulate in inflamed lungs holding potential for treating lung disorders. SIGNIFICANCE: In this study we compare intravenous versus intratracheal delivery of nanoparticles for treating lung disorders, specifically, acute respiratory distress syndrome (ARDS). By co-loading two medications into lipid nanoparticles, we were able to reduce both inflammation and mucus secretion in the inflamed lungs. Both modes of delivery resulted in high nanoparticle accumulation in the lungs, intravenously administered nanoparticles reached lung endothelial while endotracheal delivery reached lung epithelial. Combining both delivery approaches simultaneously provided the best ARDS treatment outcome.


Asunto(s)
COVID-19 , Enfermedades Pulmonares , Síndrome de Dificultad Respiratoria , Acetilcisteína/farmacología , Animales , Humanos , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Liposomas/uso terapéutico , Pulmón , Ratones , Ratones Endogámicos C57BL , Nanopartículas , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Factor de Necrosis Tumoral alfa
8.
Biomed Pharmacother ; 148: 112753, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1707727

RESUMEN

COVID-19 is a lethal disease caused by the pandemic SARS-CoV-2, which continues to be a public health threat. COVID-19 is principally a respiratory disease and is often associated with sputum retention and cytokine storm, for which there are limited therapeutic options. In this regard, we evaluated the use of BromAc®, a combination of Bromelain and Acetylcysteine (NAC). Both drugs present mucolytic effect and have been studied to treat COVID-19. Therefore, we sought to examine the mucolytic and anti-inflammatory effect of BromAc® in tracheal aspirate samples from critically ill COVID-19 patients requiring mechanical ventilation. METHOD: Tracheal aspirate samples from COVID-19 patients were collected following next of kin consent and mucolysis, rheometry and cytokine analysis using Luminex kit was performed. RESULTS: BromAc® displayed a robust mucolytic effect in a dose dependent manner on COVID-19 sputum ex vivo. BromAc® showed anti-inflammatory activity, reducing the action of cytokine storm, chemokines including MIP-1alpha, CXCL8, MIP-1b, MCP-1 and IP-10, and regulatory cytokines IL-5, IL-10, IL-13 IL-1Ra and total reduction for IL-9 compared to NAC alone and control. BromAc® acted on IL-6, demonstrating a reduction in G-CSF and VEGF-D at concentrations of 125 and 250 µg. CONCLUSION: These results indicate robust mucolytic and anti-inflammatory effect of BromAc® ex vivo in tracheal aspirates from critically ill COVID-19 patients, indicating its potential to be further assessed as pharmacological treatment for COVID-19.


Asunto(s)
Acetilcisteína/farmacología , Bromelaínas/farmacología , COVID-19/patología , Quimiocinas/efectos de los fármacos , Citocinas/efectos de los fármacos , Esputo/citología , Acetilcisteína/administración & dosificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Bromelaínas/administración & dosificación , Síndrome de Liberación de Citoquinas/patología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Combinación de Medicamentos , Expectorantes/farmacología , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Persona de Mediana Edad , Respiración Artificial , Reología , SARS-CoV-2 , Tráquea/patología , Adulto Joven
9.
FASEB J ; 35(6): e21651, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1388031

RESUMEN

The SARS-CoV-2 pandemic imposed a large burden on health and society. Therapeutics targeting different components and processes of the viral infection replication cycle are being investigated, particularly to repurpose already approved drugs. Spike protein is an important target for both vaccines and therapeutics. Insights into the mechanisms of spike-ACE2 binding and cell fusion could support the identification of compounds with inhibitory effects. Here, we demonstrate that the integrity of disulfide bonds within the receptor-binding domain (RBD) plays an important role in the membrane fusion process although their disruption does not prevent binding of spike protein to ACE2. Several reducing agents and thiol-reactive compounds are able to inhibit viral entry. N-acetyl cysteine amide, L-ascorbic acid, JTT-705, and auranofin prevented syncytia formation, viral entry into cells, and infection in a mouse model, supporting disulfides of the RBD as a therapeutically relevant target.


Asunto(s)
Acetilcisteína/análogos & derivados , Amidas/farmacología , Ácido Ascórbico/farmacología , Auranofina/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19 , Disulfuros/metabolismo , Ésteres/farmacología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Compuestos de Sulfhidrilo/farmacología , Internalización del Virus/efectos de los fármacos , Acetilcisteína/farmacología , COVID-19/metabolismo , COVID-19/patología , Células HEK293 , Humanos
10.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1304664

RESUMEN

Hepatitis C virus (HCV) is one of the main triggers of chronic liver disease. Despite tremendous progress in the HCV field, there is still no vaccine against this virus. Potential vaccines can be based on its recombinant proteins. To increase the humoral and, especially, cellular immune response to them, more effective adjuvants are needed. Here, we evaluated a panel of compounds as potential adjuvants using the HCV NS5B protein as an immunogen. These compounds included inhibitors of polyamine biosynthesis and urea cycle, the mTOR pathway, antioxidants, and cellular receptors. A pronounced stimulation of cell proliferation and interferon-γ (IFN-γ) secretion in response to concanavalin A was shown for antioxidant N-acetylcysteine (NAC), polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO), and TLR9 agonist CpG ODN 1826 (CpG). Their usage during the immunization of mice with the recombinant NS5B protein significantly increased antibody titers, enhanced lymphocyte proliferation and IFN-γ production. NAC and CpG decreased relative Treg numbers; CpG increased the number of myeloid-derived suppressor cells (MDSCs), whereas neither NAC nor DFMO affected MDSC counts. NAC and DFMO suppressed NO and interleukin 10 (IL-10) production by splenocytes, while DFMO increased the levels of IL-12. This is the first evidence of immunomodulatory activity of NAC and DFMO during prophylactic immunization against infectious diseases.


Asunto(s)
Acetilcisteína/farmacología , Adyuvantes Inmunológicos/farmacología , Eflornitina/farmacología , Hepatitis C/inmunología , Inmunidad Activa/efectos de los fármacos , Proteínas no Estructurales Virales/inmunología , Animales , Proliferación Celular , Células Cultivadas , Femenino , Inmunogenicidad Vacunal/efectos de los fármacos , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Ratones , Ratones Endogámicos DBA , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunología , Óxido Nítrico/metabolismo , Oligodesoxirribonucleótidos/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Vacunas contra Hepatitis Viral/inmunología
11.
Protein J ; 39(6): 644-656, 2020 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1196608

RESUMEN

Novel coronavirus disease 2019 (COVID-19) has resulted in a global pandemic and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies have suggested that a precise disulfide-thiol balance is crucial for viral entry and fusion into the host cell and that oxidative stress generated from free radicals can affect this balance. Here, we reviewed the current knowledge about the role of oxidative stress on SARS-CoV and SARS-CoV-2 infections. We focused on the impact of antioxidants, like NADPH and glutathione, and redox proteins, such as thioredoxin and protein disulfide isomerase, that maintain the disulfide-thiol balance in the cell. The possible influence of these biomolecules on the binding of viral protein with the host cell angiotensin-converting enzyme II receptor protein as well as on the severity of COVID-19 infection was discussed.


Asunto(s)
COVID-19/metabolismo , Estrés Oxidativo , SARS-CoV-2/fisiología , Síndrome Respiratorio Agudo Grave/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Acetilcisteína/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Antivirales/farmacología , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Estrés Oxidativo/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Tratamiento Farmacológico de COVID-19
12.
Viruses ; 13(3)2021 03 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1129790

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection is the cause of a worldwide pandemic, currently with limited therapeutic options. The spike glycoprotein and envelope protein of SARS-CoV-2, containing disulfide bridges for stabilization, represent an attractive target as they are essential for binding to the ACE2 receptor in host cells present in the nasal mucosa. Bromelain and Acetylcysteine (BromAc) has synergistic action against glycoproteins by breakage of glycosidic linkages and disulfide bonds. We sought to determine the effect of BromAc on the spike and envelope proteins and its potential to reduce infectivity in host cells. Recombinant spike and envelope SARS-CoV-2 proteins were disrupted by BromAc. Spike and envelope protein disulfide bonds were reduced by Acetylcysteine. In in vitro whole virus culture of both wild-type and spike mutants, SARS-CoV-2 demonstrated a concentration-dependent inactivation from BromAc treatment but not from single agents. Clinical testing through nasal administration in patients with early SARS-CoV-2 infection is imminent.


Asunto(s)
Acetilcisteína/farmacología , Antivirales/farmacología , Bromelaínas/farmacología , COVID-19/virología , SARS-CoV-2/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Humanos , SARS-CoV-2/genética , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Inactivación de Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
13.
Mini Rev Med Chem ; 21(3): 268-272, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-895211

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndromerelated coronavirus-2 (SARS-CoV-2), has become an ongoing pandemic worldwide. However, there are no vaccines or antiviral drugs with proven clinical efficacy. Therefore, a remedial measure is urgently needed to combat the devastating COVID-19. The pharmacological activities of Nacetylcysteine (NAC) and its potential functions in inhibiting the progression of COVID-19 make it a promising therapeutic agent for the infection. In this mini-review, we discussed the therapeutic potential of NAC in COVID-19 from the perspective of its multisite pharmacological actions.


Asunto(s)
Acetilcisteína/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/efectos de los fármacos , COVID-19/complicaciones , Diseño de Fármacos , Reposicionamiento de Medicamentos , Humanos , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo
15.
In Vivo ; 34(3 Suppl): 1567-1588, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-532631

RESUMEN

BACKGROUND: On March 11, 2020, the World Health Organization (WHO) declared the outbreak of coronavirus disease (COVID-19) a pandemic. Since then, thousands of people have suffered and died, making the need for a treatment of severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) more crucial than ever. MATERIALS AND METHODS: The authors carried out a search in PubMed, ClinicalTrials.gov and New England Journal of Medicine (NEJM) for COVID-19 to provide information on the most promising treatments against SARS-CoV-2. RESULTS: Possible COVID-19 agents with promising efficacy and favorable safety profile were identified. The results support the combination of copper, N-acetylcysteine (NAC), colchicine and nitric oxide (NO) with candidate antiviral agents, remdesivir or EIDD-2801, as a treatment for patients positive for SARS-CoV-2. CONCLUSION: The authors propose to study the effects of the combination of copper, NAC, colchicine, NO and currently used experimental antiviral agents, remdesivir or EIDD-2801, as a potential treatment scheme for SARS-COV-2.


Asunto(s)
Acetilcisteína/uso terapéutico , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/uso terapéutico , Colchicina/uso terapéutico , Cobre/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Óxido Nítrico/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Ribonucleósidos/uso terapéutico , Acetilcisteína/administración & dosificación , Acetilcisteína/farmacología , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/uso terapéutico , Alanina/administración & dosificación , Alanina/farmacología , Alanina/uso terapéutico , Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Antivirales/administración & dosificación , Antivirales/farmacología , Autofagia/efectos de los fármacos , Betacoronavirus/efectos de los fármacos , Betacoronavirus/fisiología , COVID-19 , Colchicina/administración & dosificación , Colchicina/farmacología , Cobre/administración & dosificación , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/fisiopatología , Citidina/análogos & derivados , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Hidroxilaminas , Inflamación , Óxido Nítrico/administración & dosificación , Óxido Nítrico/farmacología , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/fisiopatología , Profármacos/administración & dosificación , Profármacos/uso terapéutico , Ribonucleósidos/administración & dosificación , Ribonucleósidos/farmacología , SARS-CoV-2 , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA